Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Med Res Rev ; 43(4): 897-931, 2023 07.
Article in English | MEDLINE | ID: covidwho-2287262

ABSTRACT

Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.


Subject(s)
COVID-19 , Humans , Thiazoles/pharmacology , Nitro Compounds/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Salicylamides/pharmacology , Virus Replication
2.
Drug Discov Today ; 27(7): 1945-1953, 2022 07.
Article in English | MEDLINE | ID: covidwho-1693694

ABSTRACT

With several US Food and Drug Administration (FDA)-approved drugs and high barriers to resistance, nucleoside and nucleotide analogs remain the cornerstone of antiviral therapies for not only herpesviruses, but also HIV and hepatitis viruses (B and C); however, with the exception of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which vaccines have been developed at unprecedented speed, there are no vaccines or small antivirals yet available for (re)emerging viruses, which are primarily RNA viruses. Thus, herein, we present an overview of ribonucleoside analogs recently developed and acting as inhibitors of the viral RNA-dependent RNA polymerase (RdRp). They are new lead structures that will be exploited for the discovery of new antiviral nucleosides.


Subject(s)
Antiviral Agents , Nucleosides , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , United States
3.
Adv Exp Med Biol ; 1322: 313-337, 2021.
Article in English | MEDLINE | ID: covidwho-1353664

ABSTRACT

Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.


Subject(s)
Virus Diseases , Viruses , Antiviral Agents/therapeutic use , Drug Discovery , Drug Repositioning , Humans , Virus Diseases/drug therapy
4.
Curr Med Chem ; 28(34): 6957-6976, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1090487

ABSTRACT

Enveloped viruses belong to a large class of pathogens responsible for multiple serious diseases. Their spread into new territories has been the cause of major epidemics throughout human history, including the Spanish flu in 1918 and the latest COVID-19 pandemic. Thanks to their outer membrane, consisting essentially of host lipids, enveloped viruses are more resistant to enzymes and are also less susceptible to host immune defenses than their naked counterparts. Therefore, the development of effective approaches to combat enveloped virus infections represents a major challenge for antiviral therapy in the current century. This review focuses on the characteristics of enveloped viruses, their importance in the entry phase, drugs targeting envelope membrane- mediated entry, and those specifically designed to target the envelope. The broad- -spectrum antiviral activity of these compounds can be attributed to their ability to affect the envelope, an essential structural feature common to several viruses. This makes this class of compounds agents of great interest when no specific drugs or vaccines are available to block viral infections.


Subject(s)
COVID-19 , Influenza Pandemic, 1918-1919 , Pharmaceutical Preparations , Antiviral Agents/pharmacology , Humans , Pandemics , SARS-CoV-2 , Viral Envelope , Virus Internalization
5.
Int J Mass Spectrom ; 455: 116377, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-657624

ABSTRACT

For the treatment of various viral infections, antiviral drugs may be used. Liquid chromatography-mass spectrometry (LC-MS) with tandem mass spectrometry (MS-MS) operated in selected-reaction monitoring (SRM) mode is the method of choice in quantitative bioanalysis of drugs, e.g., to establish bioavailability, to study pharmacokinetics, and later on possibly for therapeutic drug monitoring. In this study, the fragmentation in MS-MS of small-molecule antiviral drugs against herpes and influenza viruses is reviewed. In this way, insight is gained on the identity of the product ions used in SRM. Fragmentation schemes of antiviral agents are also relevant in the identification of drug metabolites or (forced) degradation products. As information of the fragmentation of antiviral drugs in MS-MS and the identity of the product ions is very much scattered in the scientific literature, it was decided to collect this information and to review it. In this third study, attention is paid to small-molecule antiviral agents used against herpes and influenza virus infections. In addition, some attention is paid to broad-spectrum antiviral agents, that are investigated with respect to their efficacy in challenging virus infections of this century, e.g., involving Ebola, Zika and corona viruses, like SARS-CoV-2, which is causing a world-wide pandemic at this very moment. The review provides fragmentation schemes of ca. 35 antiviral agents. The identity of the product ions used in SRM, i.e., elemental composition and exact-m/z, is tabulated, and more detailed fragmentation schemes are provided.

6.
ACS Comb Sci ; 22(6): 297-305, 2020 06 08.
Article in English | MEDLINE | ID: covidwho-247796

ABSTRACT

A new coronavirus (CoV) caused a pandemic named COVID-19, which has become a global health care emergency in the present time. The virus is referred to as SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) and has a genome similar (∼82%) to that of the previously known SARS-CoV (SARS coronavirus). An attractive therapeutic target for CoVs is the main protease (Mpro) or 3-chymotrypsin-like cysteine protease (3CLpro), as this enzyme plays a key role in polyprotein processing and is active in a dimeric form. Further, Mpro is highly conserved among various CoVs, and a mutation in Mpro is often lethal to the virus. Thus, drugs targeting the Mpro enzyme significantly reduce the risk of mutation-mediated drug resistance and display broad-spectrum antiviral activity. The combinatorial design of peptide-based inhibitors targeting the dimerization of SARS-CoV Mpro represents a potential therapeutic strategy. In this regard, we have compiled the literature reports highlighting the effect of mutations and N-terminal deletion of residues of SARS-CoV Mpro on its dimerization and, thus, catalytic activity. We believe that the present review will stimulate research in this less explored yet quite significant area. The effect of the COVID-19 epidemic and the possibility of future CoV outbreaks strongly emphasize the urgent need for the design and development of potent antiviral agents against CoV infections.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/metabolism , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Drug Discovery , Humans , Models, Molecular , Molecular Targeted Therapy , Mutation/drug effects , Pandemics , Peptides/pharmacology , Pneumonia, Viral/virology , Protein Conformation/drug effects , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
7.
Int J Infect Dis ; 93: 268-276, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1172

ABSTRACT

Viral diseases are one of the leading causes of morbidity and mortality in the world. Virus-specific vaccines and antiviral drugs are the most powerful tools to combat viral diseases. However, broad-spectrum antiviral agents (BSAAs, i.e. compounds targeting viruses belonging to two or more viral families) could provide additional protection of the general population from emerging and re-emerging viral diseases, reinforcing the arsenal of available antiviral options. Here, we review discovery and development of BSAAs and summarize the information on 120 safe-in-man agents in a freely accessible database (https://drugvirus.info/). Future and ongoing pre-clinical and clinical studies will increase the number of BSAAs, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections as well as co-infections.


Subject(s)
Antiviral Agents , Drug Development , Drug Discovery , Animals , Antiviral Agents/therapeutic use , Humans , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL